Prasugrel vs. Clopidogrel for Acute Coronary Syndromes Patients Managed without Revascularization — the TRILOGY ACS trial

On behalf of the TRILOGY ACS Investigators

www.clinicaltrials.gov Identifier: NCT00699998
Committees and Disclosures

Executive Committee
- Magnus Ohman, MB ChB – Chair
- Matthew Roe, MD – PI
- Paul Armstrong, MD
- Keith Fox, MB ChB
- Harvey White, MB ChB
- Dorairaj Prabhakaran, MD

Data Monitoring Board
- Frans van de Werf, MD– Chair
- Bernard Gersh, MB ChB
- Robert Wilcox, MB ChB
- Stuart Pocock, Ph.D.
- David Williams, MD
- Andrzej Budaj, MD
- Gilles Montalescot, MD
- Michael Wilson, MS

Steering Committee
- 50 representatives from the participating countries

Conflict of Interest Disclosures
- Disclosures for Drs. Roe and Ohman listed on www.dcri.org
- Disclosures for all authors listed within the manuscript
Trial Conduct

- Academic Coordinating Center: DCRI
 - Independently performed statistical analyses
 - Global project management
 - Event adjudication activities

- Global Trial Operations: Quintiles
 - Site management
 - Data management

- Sponsors: Eli Lilly and Daiichi Sankyo

- Protocol Adherence
 - Total of 18 patients lost to follow-up (0.2% of overall)
 - Median study follow-up: 17.1 months (10.4, 24.4)
The proportion of ACS (UA/NSTEMI) patients world-wide who are managed medically without revascularization (PCI or CABG) is 40-60%.

Medically managed ACS patients have a two-fold increase in ischemic events, but have been under-represented in contemporary ACS trials.

Prasugrel, a thienopyridine P2Y_{12} inhibitor, was shown to improve outcomes compared with clopidogrel in ACS patients undergoing PCI in the TRITON trial, with an increase in major bleeding.
TRILOGY ACS — Inclusion Criteria

- Randomization within 10 days of a UA/NSTEMI event
 - NSTEMI: CK-MB or Troponin > ULN
 - UA: ST depression > 1 mm in 2 or more leads

- “Reasonable certainty” for a medical management strategy decision determined
 - Angiography not required, but if performed, had to be done before randomization, and evidence of coronary disease had to be seen (1 lesion > 30% or prior PCI/CABG)

- At least 1 of 4 enrichment criteria:
 - Age > 60 years
 - Diabetes Mellitus
 - Prior MI
 - Prior Revascularization (PCI or CABG)
TRILOGY ACS Study Design

Medically Managed UA/NSTEMI Patients

Randomization Stratified by:
Age, Country, Prior Clopidogrel Treatment
(Primary analysis cohort — Age < 75 years)

Minimum Rx Duration: 6 months; Maximum Rx Duration: 30 months

Primary Efficacy Endpoint: CV Death, MI, Stroke

1. All patients were on aspirin and low-dose aspirin (< 100 mg) was strongly recommended. For patients <60 kg or ≥75 years, 5 mg MD of prasugrel was given. Adapted from Chin CT et al. Am Heart J 2010;160:16-22.e1.
Statistical Considerations

- Event-driven trial, powered for efficacy in the primary cohort of patients < 75 yrs of age (688 events planned for 90% power for 22% RRR, 761 events accrued)
 - Exploratory analysis in the elderly (age ≥ 75 yrs) with a minimum of 2,000 patients

- Testing strategy specified first testing the primary endpoint (CV death, MI, or stroke) in patients < 75 yrs

- Conditional on successfully establishing superiority of prasugrel over clopidogrel in this group, treatment groups would be compared in the overall population (including the elderly patients)
TRILOGY ACS Enrollment:
9,326 patients in 8 regions, 52 Countries
(7,243 patients < 75 years old; 2,083 patients ≥ 75 years old)
Baseline Characteristics

<table>
<thead>
<tr>
<th>Age < 75 Years (N = 7243)</th>
<th>Overall Population (N = 9326)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prasugrel (N = 3620)</td>
<td>Prasugrel (N = 4663)</td>
</tr>
<tr>
<td>Clopidogrel (N = 3623)</td>
<td>Clopidogrel (N = 4663)</td>
</tr>
<tr>
<td>Age—yr</td>
<td>62 (56–68)</td>
</tr>
<tr>
<td>Female sex—%</td>
<td>36.2</td>
</tr>
<tr>
<td>Body weight < 60 kg—%</td>
<td>13.1</td>
</tr>
<tr>
<td>Disease classification—%</td>
<td></td>
</tr>
<tr>
<td>NSTEMI</td>
<td>67.8</td>
</tr>
<tr>
<td>Unstable angina</td>
<td>32.2</td>
</tr>
<tr>
<td>Medical History—%</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>38.5</td>
</tr>
<tr>
<td>Current/recent smoking</td>
<td>23.3</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td>43.3</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>27.0</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>14.6</td>
</tr>
<tr>
<td>Baseline risk assessment</td>
<td></td>
</tr>
<tr>
<td>GRACE risk score</td>
<td>114 (101–128)</td>
</tr>
<tr>
<td>Creatinine clearance—mL/min</td>
<td>81 (63–104)</td>
</tr>
<tr>
<td>Angiography performed pre-randomization—%</td>
<td>42.1</td>
</tr>
</tbody>
</table>

Post-randomization revascularization performed in 7.5% of patients
Primary Efficacy Endpoint to 30 Months
(Age < 75 years)

HR (95% CI) ≤ 1 Year: 0.99 (0.84, 1.16)
HR (95% CI) > 1 Year: 0.72 (0.54, 0.97)

Primary Efficacy Endpoint to 30 Months
(Age < 75 years)

HR (95% CI): 0.91 (0.79, 1.05)
P = 0.21

Interaction P = 0.07

No. at risk:
Prasugrel: 3620 3248 2359 1611 953 389
Clopidogrel: 3623 3244 2390 1596 946 399

Clopidogrel 16.0%
Prasugrel 13.9%
Primary Endpoint - Pre-Specified Sub-Groups
(Age < 75 years)

Characteristic

Overall results

Age
< 65 years
≥ 65 years

Sex
Female
Male

Weight
< 60 kg
≥ 60 kg

Disease classification
Unstable angina
NSTEMI

Diabetes mellitus
Yes
No

Current/recent smoking
Yes
No

Angiography before randomization
Yes
No

Clopidogrel strata
Stratum 1
Stratum 2
Stratum 3

PPI at randomization
Yes
No

Hazard Ratio (95% CI)

P value (Interaction)

0.142
0.290
0.959
0.969
0.712
< 0.001
0.080
0.778
0.023

Prasugrel Better
Clopidogrel Better

Duke Clinical Research Institute
Efficacy Component Endpoints to 30 Months
(Age < 75 years)

<table>
<thead>
<tr>
<th>Event</th>
<th>≤1 Year (HR (95% CI))</th>
<th>>1 Year (HR (95% CI))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV Death</td>
<td>1.00 (0.78, 1.28)</td>
<td>0.75 (0.49, 1.14)</td>
</tr>
<tr>
<td>All MI</td>
<td>0.97 (0.78, 1.19)</td>
<td>0.68 (0.46, 0.99)</td>
</tr>
<tr>
<td>All Stroke</td>
<td>0.86 (0.50, 1.47)</td>
<td>0.35 (0.14, 0.88)</td>
</tr>
</tbody>
</table>

- **CV Death**: HR: 0.93 (0.75-1.15) for ≤1 Year, 0.89 (0.74-1.07) for >1 Year.
- **All MI**: HR: 0.87 (0.69-1.09) for ≤1 Year, 0.89 (0.74-1.07) for >1 Year.
- **All Stroke**: HR: 0.67 (0.42-1.06) for ≤1 Year, 0.35 (0.14, 0.88) for >1 Year.
Lower risk multiple recurrent ischemic events suggested with prasugrel using the pre-specified Andersen-Gill model (HR = 0.85, 95% CI: 0.72–1.00, P=0.04)

Significant interaction with treatment and time (HR for > 12 mos = 0.64, 95% CI: 0.48–0.86, Interaction P=0.02)

<table>
<thead>
<tr>
<th></th>
<th>Prasugrel</th>
<th>Clopidogrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 event</td>
<td>364</td>
<td>397</td>
</tr>
<tr>
<td>≥ 2 events</td>
<td>77</td>
<td>109</td>
</tr>
<tr>
<td>3–7 events</td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>

* Pre-specified evaluation of all CV death, MI, or stroke events by treatment
TIMI Major Bleeding to 30 Months (Age < 75 years)

HR (95% CI):
1.31 (0.81, 2.11)
P = 0.27
Incidence of Bleeding Outcomes
(Age < 75 years)

GUSTO Criteria

- Severe/life-threatening: Prasugrel 0.4%, Clopidogrel 0.4%
 - Prasugrel: 13
 - Clopidogrel: 14
- Severe/life-threatening or moderate: Prasugrel 1.4%, Clopidogrel 1.0%
 - Prasugrel: 52
 - Clopidogrel: 35
- Major: Prasugrel 1.1%, Clopidogrel 0.8%
 - Prasugrel: 39
 - Clopidogrel: 30

TIMI Criteria

- Major or Minor: Prasugrel 1.9%, Clopidogrel 1.3%
 - Prasugrel: 70
 - Clopidogrel: 46
- Life-threatening: Prasugrel 0.4%, Clopidogrel 0.5%
 - Prasugrel: 16
 - Clopidogrel: 17
- Fatal: Prasugrel 0.1%, Clopidogrel 0.1%
 - Prasugrel: 4
 - Clopidogrel: 4
- Intracranial Hemorrhage: Prasugrel 0.2%, Clopidogrel 0.3%
 - Prasugrel: 8
 - Clopidogrel: 12

P values:
- GUSTO Criteria: Prasugrel vs Clopidogrel
 - Severe/life-threatening: P = 0.87
 - Severe/life-threatening or moderate: P = 0.06
- TIMI Criteria: Prasugrel vs Clopidogrel
 - Major or Minor: P = 0.02
 - Major: P = 0.27
 - Life-threatening: P = 0.88
 - Fatal: P = 0.99
 - Intracranial Hemorrhage: P = 0.39
Primary Efficacy Endpoint and TIMI Major Bleeding Through 30 Months (Overall population)

HR (95% CI):
0.96 (0.86, 1.07) \(P = 0.45 \)

HR (95% CI):
1.23 (0.84, 1.81) \(P = 0.29 \)
Incidence of Key Safety Outcomes (Overall Population)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prasugrel</th>
<th>Clopidogrel</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUSTO Severe/life-threatening bleeding</td>
<td>22 (0.5%)</td>
<td>27 (0.6%)</td>
<td>0.83 (0.48–1.46)</td>
<td>0.53</td>
</tr>
<tr>
<td>TIMI Fatal Bleeding</td>
<td>7 (0.2%)</td>
<td>9 (0.2%)</td>
<td>0.80 (0.30–2.14)</td>
<td>0.68</td>
</tr>
<tr>
<td>Intracranial Hemorrhage</td>
<td>14 (0.3%)</td>
<td>19 (0.4%)</td>
<td>0.76 (0.38–1.51)</td>
<td>0.42</td>
</tr>
<tr>
<td>Neoplasm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New, non-benign neoplasms*</td>
<td>82 (1.8%)</td>
<td>78 (1.7%)</td>
<td>1.05 (0.77-1.43)</td>
<td>0.79</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>385 (8.3%)</td>
<td>409 (8.8%)</td>
<td>0.94 (0.82–1.08)</td>
<td>0.40</td>
</tr>
</tbody>
</table>

*Among patients with no prior history of malignancy or prior malignancy treated with curative therapy
Conclusions

- In the largest trial to date of ACS patients managed medically without revascularization, prasugrel was not statistically different from clopidogrel during 2.5 years of follow-up among patients < 75 years of age.

- Further analyses of the primary endpoint yielded several important findings favoring prasugrel treatment:
 - Trend for a time-dependent benefit after 1 year.
 - Fewer total recurrent ischemic events, particularly after 1 year.

- No statistical differences in major, life-threatening, or fatal bleeding with prasugrel vs. clopidogrel.
Prasugrel versus Clopidogrel for Acute Coronary Syndromes without Revascularization

Matthew T. Roe, M.D., M.H.S., Paul W. Armstrong, M.D.,
Keith A.A. Fox, M.B., Ch.B., Harvey D. White, M.B., Ch.B., D.Sc.,
Jan H. Cornel, M.D., Ph.D., Deepak L. Bhatt, M.D., M.P.H.,
Peter Clemmensen, M.D., D.M.Sc., Felipe Martinez, M.D., Diego Ardissino, M.D.,
Jose C. Nicolau, M.D., Ph.D., William E. Boden, M.D., Paul A. Gurbel, M.D.,
Witold Ruzyllo, M.D., Anthony J. Dalby, M.D., Darren K. McGuire, M.D., M.H.Sc.,
Jose L. Leiva-Pons, M.D., Alexander Parkhomenko, M.D., Ph.D.,
Shmuel Gottlieb, M.D., Gracita O. Topacio, M.D., Christian Hamm, M.D.,
Gregory Pavlides, M.D., Assen R. Goudev, M.D., Ali Oto, M.D.,
Chuen-Den Tseng, M.D., Ph.D., Bela Merkely, M.D., Ph.D., D.Sc.,
Vladimir Gasparovic, M.D., Ph.D., Ramon Corbalan, M.D., Mircea Cinteză, M.D., Ph.D.,
R. Craig McLendon, R.N., Kenneth J. Winters, M.D., Eileen B. Brown, Ph.D.,
Yuliya Lokhnygina, Ph.D., Philip E. Aylward, B.M., B.Ch., Ph.D., Kurt Huber, M.D.,
Judith S. Hochman, M.D., and E. Magnus Ohman, M.B., Ch.B.,
for the TRILOGY ACS Investigators*